Verbund

PRETTY - Personalisierte Vorhersage der Toxizität bei Transplantationen durch föderiertes Lernen aus Daten, Expertenmeinungen und Patientenperspektiven

In der modernen Krebsforschung fallen immer umfangreichere Datensätze an (Big Data). Die Daten stammen unter anderem aus molekularen und biochemischen Analysen, Bildgebungsverfahren, klinischen Studien. Teilweise bilden diese Daten auch Krankheitsverläufe von Patientinnen und Patienten ab. Neue computergestützte Ansätze der Datennutzung, modernste Methoden der Künstlichen Intelligenz bzw. des Maschinellen Lernens bergen ein großes Potenzial bei der Analyse und Extraktion solcher forschungsrelevanten Informationen.

Mit dieser Förderrichtlinie im Rahmen der Nationalen Dekade gegen Krebs beabsichtigt das BMBF, Forschungsgruppen aus dem Bereich der Datenanalyse einen niederschwelligen Zugang zu hochqualitativen Daten aus der translationalen, biomedizinischen Krebsforschung und der onkologischen Routineversorgung zu ermöglichen. Zeitgleich arbeiten Forschende aus den Bereichen der Datengewinnung und Datenanalyse eng zusammen, um klinisch relevante onkologische Fragen anzugehen. Darüber hinaus soll die Kultur des Datenteilens für Forschungszwecke gefördert werden.

Das Ziel des Forschungsverbundes  PRETTY ist es, die Lebensqualität und das Überleben von an Leukämie Erkrankten zu verbessern. Die Behandlung der Leukämie mit körperfremden Stammzellen (allogene Stammzelltransplantation) kann zu schweren Nebenwirkungen, wie beispielsweise Nierenschäden führen. Im Projekt wird ein Vorhersagemodell für solche Nierenschäden entwickelt und getestet. Durch das Modell sollen Risikofaktoren früh erkannt und Krankenhausaufenthalte sowie Kosten reduziert werden. Außerdem soll das Modell später auch auf andere Krebsbehandlungen übertragen werden.

Teilprojekte

Standort Hannover

Förderkennzeichen: 01KD2416A
Gesamte Fördersumme: 224.385 EUR
Förderzeitraum: 2024 - 2026
Projektleitung: Prof. Dr.-Ing. Steffen Oeltze-Jafra
Adresse: Medizinische Hochschule Hannover, Peter L. Reichertz Institut für Medizinische Informatik
Carl-Neuberg-Str. 1
30625 Hannover

Standort Hannover

Leukämie-Patientinnen und Patienten, die sich einer allogenen hämatopoetischen Zelltransplantation (alloHZT) unterziehen, können als schwere Nebenwirkung an Nephrotoxizität leiden. Über die Risikofaktoren, die die Nephrotoxizität bei einzelnen Patienten begünstigen, ist nur sehr wenig bekannt. Die Haupthindernisse für den Erkenntnisgewinn sind das Fehlen einer umfassenden Datenerhebung und -analyse großer Patientenkohorten. Diese Hindernisse werden adressiert, indem die prospektive Datenintegration in den Datenintegrationszentren (DIZ) von vier großen Universitätskliniken ermöglicht, vier lokale personalisierte Vorhersagemodelle für Nephrotoxizität bei der alloHZT-Behandlung etabliert und die vier lokalen Modelle in ein einheitliches föderiertes Vorhersagemodell integriert werden. Es werden ein zuvor entwickeltes visuelles Tool zum Lernen von Bayes‘schen Netzwerken (BN) aus Daten und den integrierten lokalen BN-Lernansatz für föderiertes Lernen angepasst und erweitert. Der Hypothese nach, wird dieser Ansatz die Vorhersagegenauigkeit gegenüber den nicht-föderierten Modellen verbessern. Im Gegensatz zu den meisten föderierten Lernansätzen, die sich auf Daten konzentrieren, wird auch lokales Fachwissen der Behandelnden (Arztperspektive) und der Behandelten (Patientenperspektive, d.h. von Patientinnen und Patienten berichteter, subjektiv empfundener Schweregrad nephrotoxischer Wirkung) in das Modelllernen integriert werden. Es ist davon auszugehen, dass dieser Ansatz die Lebensqualität und das Überleben von Patientinnen und Patienten, die sich einer alloHZT Behandlung unterziehen müssen, verbessert, modifizierbare Risikofaktoren für Nephrotoxizität identifiziert, Krankenhausaufenthalte und Krankenhauskosten reduziert und durch Modelltransfer anderen Krebs-Patientinnen und -Patienten zugutekommen wird.

Standort Jena

Förderkennzeichen: 01KD2416B
Gesamte Fördersumme: 249.953 EUR
Förderzeitraum: 2024 - 2026
Projektleitung: Prof. Dr. Inken Hilgendorf
Adresse: Universitätsklinikum Jena, Klinik für Innere Medizin II
Am Klinikum 1
07747 Jena

Standort Jena

Leukämie-Patientinnen und Patienten, die sich einer allogenen hämatopoetischen Zelltransplantation (alloHZT) unterziehen, können als schwere Nebenwirkung an Nephrotoxizität leiden. Über die Risikofaktoren, die die Nephrotoxizität bei einzelnen Patienten begünstigen, ist nur sehr wenig bekannt. Die Haupthindernisse für den Erkenntnisgewinn sind das Fehlen einer umfassenden Datenerhebung und -analyse großer Patientenkohorten. Diese Hindernisse werden adressiert, indem die prospektive Datenintegration in den Datenintegrationszentren (DIZ) von vier großen Universitätskliniken ermöglicht, vier lokale personalisierte Vorhersagemodelle für Nephrotoxizität bei der alloHZT-Behandlung etabliert und die vier lokalen Modelle in ein einheitliches föderiertes Vorhersagemodell integriert werden. Es werden ein zuvor entwickeltes visuelles Tool zum Lernen von Bayes‘schen Netzwerken (BN) aus Daten und den integrierten lokalen BN-Lernansatz für föderiertes Lernen angepasst und erweitert. Der Hypothese nach, wird dieser Ansatz die Vorhersagegenauigkeit gegenüber den nicht-föderierten Modellen verbessern. Im Gegensatz zu den meisten föderierten Lernansätzen, die sich auf Daten konzentrieren, wird auch lokales Fachwissen der Behandelnden (Arztperspektive) und der Behandelten (Patientenperspektive, d.h. von Patientinnen und Patienten berichteter, subjektiv empfundener Schweregrad nephrotoxischer Wirkung) in das Modelllernen integriert werden. Es ist davon auszugehen, dass dieser Ansatz die Lebensqualität und das Überleben von Patientinnen und Patienten, die sich einer alloHZT Behandlung unterziehen müssen, verbessert, modifizierbare Risikofaktoren für Nephrotoxizität identifiziert, Krankenhausaufenthalte und Krankenhauskosten reduziert und durch Modelltransfer anderen Krebs-Patientinnen und -Patienten zugutekommen wird.

Standort Göttingen

Förderkennzeichen: 01KD2416C
Gesamte Fördersumme: 243.803 EUR
Förderzeitraum: 2024 - 2026
Projektleitung: Prof. Dr. Gerald Wulf
Adresse: Georg-August-Universität Göttingen, Universitätsklinikum und Medizinische Fakultät, Zentrum Innere Medizin, Hämatologie und Onkologie
Robert-Koch-Str. 40
37075 Göttingen

Standort Göttingen

Leukämie-Patientinnen und Patienten, die sich einer allogenen hämatopoetischen Zelltransplantation (alloHZT) unterziehen, können als schwere Nebenwirkung an Nephrotoxizität leiden. Über die Risikofaktoren, die die Nephrotoxizität bei einzelnen Patienten begünstigen, ist nur sehr wenig bekannt. Die Haupthindernisse für den Erkenntnisgewinn sind das Fehlen einer umfassenden Datenerhebung und -analyse großer Patientenkohorten. Diese Hindernisse werden adressiert, indem die prospektive Datenintegration in den Datenintegrationszentren (DIZ) von vier großen Universitätskliniken ermöglicht, vier lokale personalisierte Vorhersagemodelle für Nephrotoxizität bei der alloHZT-Behandlung etabliert und die vier lokalen Modelle in ein einheitliches föderiertes Vorhersagemodell integriert werden. Es werden ein zuvor entwickeltes visuelles Tool zum Lernen von Bayes‘schen Netzwerken (BN) aus Daten und den integrierten lokalen BN-Lernansatz für föderiertes Lernen angepasst und erweitert. Der Hypothese nach, wird dieser Ansatz die Vorhersagegenauigkeit gegenüber den nicht-föderierten Modellen verbessern. Im Gegensatz zu den meisten föderierten Lernansätzen, die sich auf Daten konzentrieren, wird auch lokales Fachwissen der Behandelnden (Arztperspektive) und der Behandelten (Patientenperspektive, d.h. von Patientinnen und Patienten berichteter, subjektiv empfundener Schweregrad nephrotoxischer Wirkung) in das Modelllernen integriert werden. Es ist davon auszugehen, dass dieser Ansatz die Lebensqualität und das Überleben von Patientinnen und Patienten, die sich einer alloHZT Behandlung unterziehen müssen, verbessert, modifizierbare Risikofaktoren für Nephrotoxizität identifiziert, Krankenhausaufenthalte und Krankenhauskosten reduziert und durch Modelltransfer anderen Krebs-Patientinnen und -Patienten zugutekommen wird.

Standort Leipzig

Förderkennzeichen: 01KD2416D
Gesamte Fördersumme: 249.528 EUR
Förderzeitraum: 2024 - 2026
Projektleitung: Dr. Georg-Nikolaus Franke
Adresse: Universität Leipzig, Medizinische Fakultät, Universitätsklinikum, Medizinische Klinik und Poliklinik I, Hämatologie, Zelltherapie, Hämostaseologie und Infektiologie
Liebigstr. 22
04103 Leipzig

Standort Leipzig

Leukämie-Patientinnen und Patienten, die sich einer allogenen hämatopoetischen Zelltransplantation (alloHZT) unterziehen, können als schwere Nebenwirkung an Nephrotoxizität leiden. Über die Risikofaktoren, die die Nephrotoxizität bei einzelnen Patienten begünstigen, ist nur sehr wenig bekannt. Die Haupthindernisse für den Erkenntnisgewinn sind das Fehlen einer umfassenden Datenerhebung und -analyse großer Patientenkohorten. Diese Hindernisse werden adressiert, indem die prospektive Datenintegration in den Datenintegrationszentren (DIZ) von vier großen Universitätskliniken ermöglicht, vier lokale personalisierte Vorhersagemodelle für Nephrotoxizität bei der alloHZT-Behandlung etabliert und die vier lokalen Modelle in ein einheitliches föderiertes Vorhersagemodell integriert werden. Es werden ein zuvor entwickeltes visuelles Tool zum Lernen von Bayes‘schen Netzwerken (BN) aus Daten und den integrierten lokalen BN-Lernansatz für föderiertes Lernen angepasst und erweitert. Der Hypothese nach, wird dieser Ansatz die Vorhersagegenauigkeit gegenüber den nicht-föderierten Modellen verbessern. Im Gegensatz zu den meisten föderierten Lernansätzen, die sich auf Daten konzentrieren, wird auch lokales Fachwissen der Behandelnden (Arztperspektive) und der Behandelten (Patientenperspektive, d.h. von Patientinnen und Patienten berichteter, subjektiv empfundener Schweregrad nephrotoxischer Wirkung) in das Modelllernen integriert werden. Es ist davon auszugehen, dass dieser Ansatz die Lebensqualität und das Überleben von Patientinnen und Patienten, die sich einer alloHZT Behandlung unterziehen müssen, verbessert, modifizierbare Risikofaktoren für Nephrotoxizität identifiziert, Krankenhausaufenthalte und Krankenhauskosten reduziert und durch Modelltransfer anderen Krebs-Patientinnen und -Patienten zugutekommen wird.

Standort Braunschweig

Förderkennzeichen: 01KD2416E
Gesamte Fördersumme: 237.540 EUR
Förderzeitraum: 2024 - 2026
Projektleitung: Prof. Dr. Tim Kacprowski
Adresse: Technische Universität Carolo-Wilhelmina zu Braunschweig, Peter L. Reichertz Institut für Medizinische Informatik, Abt. Data Science in Biomedicine
Rebenring 56
38106 Braunschweig

Standort Braunschweig

Leukämie-Patientinnen und Patienten, die sich einer allogenen hämatopoetischen Zelltransplantation (alloHZT) unterziehen, können als schwere Nebenwirkung an Nephrotoxizität leiden. Über die Risikofaktoren, die die Nephrotoxizität bei einzelnen Patienten begünstigen, ist nur sehr wenig bekannt. Die Haupthindernisse für den Erkenntnisgewinn sind das Fehlen einer umfassenden Datenerhebung und -analyse großer Patientenkohorten. Diese Hindernisse werden adressiert, indem die prospektive Datenintegration in den Datenintegrationszentren (DIZ) von vier großen Universitätskliniken ermöglicht, vier lokale personalisierte Vorhersagemodelle für Nephrotoxizität bei der alloHZT-Behandlung etabliert und die vier lokalen Modelle in ein einheitliches föderiertes Vorhersagemodell integriert werden. Es werden ein zuvor entwickeltes visuelles Tool zum Lernen von Bayes‘schen Netzwerken (BN) aus Daten und den integrierten lokalen BN-Lernansatz für föderiertes Lernen angepasst und erweitert. Der Hypothese nach, wird dieser Ansatz die Vorhersagegenauigkeit gegenüber den nicht-föderierten Modellen verbessern. Im Gegensatz zu den meisten föderierten Lernansätzen, die sich auf Daten konzentrieren, wird auch lokales Fachwissen der Behandelnden (Arztperspektive) und der Behandelten (Patientenperspektive, d.h. von Patientinnen und Patienten berichteter, subjektiv empfundener Schweregrad nephrotoxischer Wirkung) in das Modelllernen integriert werden. Es ist davon auszugehen, dass dieser Ansatz die Lebensqualität und das Überleben von Patientinnen und Patienten, die sich einer alloHZT Behandlung unterziehen müssen, verbessert, modifizierbare Risikofaktoren für Nephrotoxizität identifiziert, Krankenhausaufenthalte und Krankenhauskosten reduziert und durch Modelltransfer anderen Krebs-Patientinnen und -Patienten zugutekommen wird.

Standort Halle

Förderkennzeichen: 01KD2416F
Gesamte Fördersumme: 239.623 EUR
Förderzeitraum: 2024 - 2026
Projektleitung: Prof. Dr. Michael Heuser
Adresse: Martin-Luther-Universität Halle-Wittenberg, Medizinische Fakultät und Universitätsklinikum, Klinik und Poliklinik für Innere Medizin IV
Ernst-Grube-Str. 40
06120 Halle (Saale)

Standort Halle

Leukämie-Patientinnen und Patienten, die sich einer allogenen hämatopoetischen Zelltransplantation (alloHZT) unterziehen, können als schwere Nebenwirkung an Nephrotoxizität leiden. Über die Risikofaktoren, die die Nephrotoxizität bei einzelnen Patienten begünstigen, ist nur sehr wenig bekannt. Die Haupthindernisse für den Erkenntnisgewinn sind das Fehlen einer umfassenden Datenerhebung und -analyse großer Patientenkohorten. Diese Hindernisse werden adressiert, indem die prospektive Datenintegration in den Datenintegrationszentren (DIZ) von vier großen Universitätskliniken ermöglicht, vier lokale personalisierte Vorhersagemodelle für Nephrotoxizität bei der alloHZT-Behandlung etabliert und die vier lokalen Modelle in ein einheitliches föderiertes Vorhersagemodell integriert werden. Es werden ein zuvor entwickeltes visuelles Tool zum Lernen von Bayes‘schen Netzwerken (BN) aus Daten und den integrierten lokalen BN-Lernansatz für föderiertes Lernen angepasst und erweitert. Der Hypothese nach, wird dieser Ansatz die Vorhersagegenauigkeit gegenüber den nicht-föderierten Modellen verbessern. Im Gegensatz zu den meisten föderierten Lernansätzen, die sich auf Daten konzentrieren, wird auch lokales Fachwissen der Behandelnden (Arztperspektive) und der Behandelten (Patientenperspektive, d.h. von Patientinnen und Patienten berichteter, subjektiv empfundener Schweregrad nephrotoxischer Wirkung) in das Modelllernen integriert werden. Es ist davon auszugehen, dass dieser Ansatz die Lebensqualität und das Überleben von Patientinnen und Patienten, die sich einer alloHZT Behandlung unterziehen müssen, verbessert, modifizierbare Risikofaktoren für Nephrotoxizität identifiziert, Krankenhausaufenthalte und Krankenhauskosten reduziert und durch Modelltransfer anderen Krebs-Patientinnen und -Patienten zugutekommen wird.