Förderkennzeichen: | 01ZZ2008 |
Fördersumme: | 1.370.633 EUR |
Förderzeitraum: | 2021 - 2025 |
Projektleitung: | Zaynab Hammoud |
Adresse: |
Universität Augsburg, Fakultät für Angewandte Informatik, IT-Infrastrukturen für die Translationale Medizinische Forschung Alter Postweg 101 86159 Augsburg |
Im Molekularen Tumorboard werden basierend auf einer Reihe verschiedener Datentypen (klinische Daten, radiologische Daten, histopathologische Daten, genomische Daten, Genexpressionsdaten, ggf. weitere Hochdurchsatzdaten) Therapieentscheidungen für Krebspatienten getroffen. Dazu werden mittels bioinformatischer Methoden bestimmte Features (z. B. bestimmte Mutationen oder Genexpressionsmuster) priorisiert. Basierend darauf werden dann durch (häufig manuell ausgeführte) Datenbankrecherchen Therapievorschläge erarbeitet und interdisziplinär diskutiert. Unklar ist jedoch wie fortschreitendes Wissen und Daten aus externen Quellen in einem standard-getriebenen Prozess in die Arbeit der molekularen Tumorkonferenz integriert werden kann. Auch gibt es keine systematische Erfassung früherer Patienten und Empfehlungen, die es ermöglichen würden, aktuelle Patienten mit ähnlichen früheren Patienten zu vergleichen. Um auf große Fallzahlen zurückgreifen zu können, sollte eine Vernetzung mit den Molekularen Tumorboards anderer Standorte erreicht werden. Ziele: Erstens, die Konzeptionierung einer modular aufgebauten Plattform für das MTB, bei dem Reproduzierbarkeit, Dokumentation und Update-Mechanismen entlang des Prozesses verwirklicht werden. Zweitens, die Erstellung eines Konzepts zur Anbindung der klinischen Routine und der Forschungsdaten. Drittes Ziel ist die verstärkte Automatisierung der Datenintegration und die Aufarbeitung unter Einbeziehung externen Wissens. Das vierte große Ziel ist die Entwicklung von Machine Learning Verfahren für die Analyse im Rahmen des MTB. Hierunter fällt bspw. die Nutzung von unstrukturiertem Wissen (z. B. Arztbriefe), die Generierung komplexer Signaturen zur Modellierung von Therapieansprechen sowie die Identifikation ähnlicher Patienten. Schließlich ist das fünfte Ziel die Implementierung eines Prototyps und quelloffene Software für eine modulare reproduzierbare Software-Plattform für das MTB.